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RANGES OF APPLICABILITY FOR THE CONTINUUM-BEAM MODEL 
IN THE CONSTITUTIVE ANALYSIS OF CARBON NANOTUBES: 

NANOTUBES OR NANO-BEAMS?  
 

VASYL MICHAEL HARIK * 

  

Abstract.  Ranges of validity for the continuum-beam model, the length-scale effects and continuum 

assumptions are analyzed in the framework of scaling analysis of NT structure.  Two coupled criteria for the 

applicability of the continuum model are presented.  Scaling analysis of NT buckling and geometric parameters 

(e.g., diameter and length) is carried out to determine the key non-dimensional parameters that control the buckling 

strains and modes of NT buckling.  A model applicability map, which represents two classes of NTs, is constructed 

in the space of non-dimensional parameters.  In an analogy with continuum mechanics, a mechanical law of 

geometric similitude is presented for two classes of beam-like NTs having different geometries.  Expressions for the 

critical buckling loads and strains are tailored for the distinct groups of NTs and compared with the data provided by 

the molecular dynamics simulations.  Implications for molecular dynamics simulations and the NT-based scanning 

probes are discussed. 
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1. Introduction.  Carbon nanotubes (NTs) are cylindrical molecules composed of carbon atoms in a periodic 

hexagonal arrangement.  NTs appear to possess extraordinary physical properties such as high stiffness-to-weight 

and strength-to-weight ratios and enormous electrical and thermal conductivities [1-7].  Potential applications of 

NTs range from new electronic devices and scanning probes to multifunctional structural components and control 

systems for aerospace industries.  To realize the potential benefits, fundamental understanding of nano-structured 

material properties and their effect on the associated mechanical behavior is required in order to develop reliable 

constitutive models for various design purposes.   

Recently, the mechanical response of single wall nanotubes (SWNTs) had been evaluated via atomistic and 

molecular dynamics (MD) simulations [1, 2].  In these studies, the structured cylinder models and the continuum 

Euler beam theory were used to analyze or to deduce the Young's modulus of carbon nanotubes.  Yakobson et al. [2] 

presented a MD simulation of carbon NTs for compressive buckling, and an analogy with macroscopic continuum 

beams and shells, which had some geometric similarities with NTs and their global behavior, was used.  Such 

analogy provided estimates for the NT Young’s modulus, ENT, which may reach as high as 1,000 GPa.  Such simple 

models provide an attractive tool for data reduction and the analysis of structure-property relationships for nano-

                                                
* Staff Scientist, ICASE, NASA Langley Research Center, Hampton, VA 23681-2199 (e-mail: harik@icase.edu). 
This research was supported by the National Aeronautics and Space Administration under NASA Contract No. 
NAS1-97046 while the author was in residence at ICASE. 



 

 2

structured materials and carbon NTs, in particular.  A macromechanical model “may serve as a useful guide, but its 

relevance for a covalent-bonded system of only a few atoms in diameter is far from obvious” [2].  To ensure the 

robustness of data reduction schemes that are based on continuum mechanics, a careful analysis of continuum 

approximations used in macromechanical models and possible limitations of this approach at the nano-scale level is 

required. 

Govindjee and Sackman [6] considered an elastic multi-sheet model of carbon NTs to show the explicit 

dependence of material properties on the system size when a continuum cross-section assumption is made for a 

multi-shell system subjected to bending.  The continuum assumption was shown to hold when more than 201 shells 

were present.  In the present study, geometric parameters of NT molecular structure are used to define a set of 

restrictions on a series of assumptions that are used in the Euler beam model.  Ru [7] proposed an intrinsic bending 

stiffness for carbon NTs in order to decouple the bending shell stiffness of NTs from their ill-defined effective 

thickness and to ensure a consistent use of the classical shell theory [8].  In the current analysis, it is shown the NT 

thickness may have no direct effect on the buckling behavior of NTs for two classes of molecular structures. 

Extensive atomistic and MD simulations of carbon NTs remain computationally expensive and limited in scope.  

As a result, the continuum models that are appropriately tailored for a particular molecular structure and specific 

loading conditions may be useful for the qualitative analysis of constitutive behavior of carbon NTs.  Since the 

mechanics of NT response is likely to depend on NT structure, a blend of scaling analysis and continuum mechanics 

seems appropriate for the development of a methodology for inter-scalar extension of a continuum model to the 

nano-structures under consideration.  This study is focused on beam-like structures and elongated lattice shells that 

have one dominant dimension as opposed to planar carbon sheets, for instance.  Here, to examine possible length-

scale limitations of a linear beam model, the underlying continuum assumptions are analyzed in the framework of 

scaling analysis and hierarchical dimensional analysis of NT buckling and the geometric and material parameters 

(e.g., the bond length, radius, and elastic modulus).  

Dimensional analysis is hardly a verification of physical units, as it may dramatically reduce the number of 

system parameters by identifying one or two non-dimensional parameters that control the NT buckling behavior.  It 

also helps to select the key ratios that discriminate between different buckling modes and distinct classes of NTs: 

short NT shells, long beam-like shells and thin beam-like NTs.  Here, restrictions on the use of a beam model for the 

last two classes of NTs are derived in the form of applicability criteria and presented along with the model 

applicability map for different ranges of geometric parameters.  Scaling analysis can provide general functional 

relations for NT buckling response, which indicate the key elements that may appear in formulae for critical 

buckling loads and strains.  The resulting functional relations span the three length scales, which are associated with 

the size of a carbon ring, the NT radius characterizing the NT cross-sectional size and the length of NTs 

corresponding to the macromolecular scale.  Hierarchical dimensional analysis is also instrumental in deriving a 

mechanical law of geometric similitude for NT buckling in an analogy with continuum mechanics.  Here, the 

classical buckling formulae are tailored for different classes of NTs and the values of critical strains are compared 

with the available data for carbon NTs.  These formulae embedded into the scaling analysis allow one to consider 

wide ranges of numerical values for the parameters involved through a few inter-scalar quantities. 
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The structure of this paper has the following components.  First, the problem of nanomechanical buckling is 

defined along with a description of NT structure, variations of geometric parameters and their effect on geometric 

properties of NT shells (Section 2.1).  An estimate of NT thickness is suggested as well.  In Section 2.2, the 

macromechanical concepts of loading, load transfer and deformation are adjusted to the molecular structure of NTs.  

Before the continuum beam model is used in Section 3, the aspects of beam-like deformation of NT structures are 

discussed to illustrate the origin and length-scale limitations of the macroscopic concept of Young’s modulus and 

when it can be applied to carbon NTs.  In Section 3.1, two key criteria for the applicability of a linear continuum 

model are presented.  Derivation of the main non-dimensional parameters for NT buckling is carried out in Section 

3.2.  A mechanical law of geometric similitude is presented in Section 3.3.  Ranges of validity for the continuum 

beam model are summarized in Section 3.4 in a model applicability map and a table.  In the discussion (Section 4), 

unique features of the mechanics of NT buckling are listed along with an overview of classical assumptions of the 

Euler beam theory.  Implications for MD simulations and the design of NT-based scanning probes are also 

discussed. 

 

2. A nanomechanical problem of NT buckling.  Mechanical behavior of molecular structures is likely to 

depend on the geometric parameters characterizing a particular structural arrangement of atoms and the force fields 

between them.  Here, the continuum model considered neglects all thermal, quantum and electromagnetic effects.  In 

the problem formulation, the geometry of carbon NTs is defined by a set of parameters and the ranges for their 

values that characterize the three length scales involved in the buckling problem (Fig. 2).  Depending on NT radius 

and an estimate of NT thickness, the NT shells may be considered either thin or thick.  In Section 3, it is shown that 

both types of geometries are suited for a beam approximation under certain conditions.  Here, the loading conditions 

for the NT molecular structures are also specified along with the type of elastic deformation considered. 

 

2.1. Molecular structure of carbon NTs.  Carbon NTs have a lattice-like structure [9] that consists of periodic 

hexagonal cells of bonded carbon atoms (Fig. 1).  The geometric properties of NTs define their structural topology 

that is similar to beams, for small radii, and cylindrical shells, for large radii.  To describe the geometric properties 

of NTs and their effect on the global behavior of NTs, one has to consider the characteristic parameters that define 

the NT structural elements, shape, size, etc.  In the NT molecules, the smallest dimension is the diameter of carbon 

atoms (i.e., about 1 Angstrom or 0.1 nm).  The adjacent atoms are separated by the distance of about 0.14 nm, that is 

the length of the C-C bonds or the σ-bond, lc-c.  A SWNT consists of many hexagonal carbon rings that have the 

width, a1, of about 0.24 nm [5].  The diameter of NTs, dNT, may vary from about 0.4 nm to 100 nm, as a result of 

various growth conditions (Table 1).  The length of NTs, LNT, may also range from about 1 nm to 1 µm or more, 

depending on the processing conditions.  As a result, the NT structure involves three length scales associated with 

the carbon ring, NT diameter and its length (Fig. 2).  A clear separation or collapse of the adjacent length scales 

results into formation of different classes of NT geometries and structures. 

The cross-section of the open molecular lattice of carbon NTs has no continuum thickness, although it has a 

closed cylindrical structure.  The effective thickness of NTs, hNT, can be only estimated.  It is bounded by various 



 

 4

estimates between 0.066 nm and the value of interlayer spacing, t, [2, 5].  The interlayer spacing, t, in the multi-wall 

NTs or layered carbon [5] is relatively large due to the van der Waals forces and is about 0.34 nm.  Different 

estimates are based on models that may address distinct physical effects.  The highest interlayer-thickness estimate 

[5] reflects the effect of van der Waals forces, which may not always play the main role in a deformation process.  

The lowest shell-based estimate [2] is linked to the shell-like buckling behavior of a NT that has a particular 

geometry.  An equivalent-truss model [10] for the planar carbon sheets offers an estimate of 0.28 nm, which is close 

to the field-based approximation of 0.34 nm. 

 

TABLE 1. 

Ranges of the key geometric parameters for carbon NTs 

 

             Parameters    Typical Value     Range of Values 
The C-C bond length, lc-c  0.144 nm 0.14 – 0.16 nm 
Diameter of SWNTs, dNT 1, 10 nm 0.4 – 100 nm 
Length of SWNTs, LNT 100 nm, 1 µm 1 nm – 10 µm 
Thickness of a SWNT, hNT              ? 0.066 – 0.34 nm 

 

For large radii, a NT shell can be defined as a curved, surface-like structure that possesses two characteristics of 

a closed surface (i.e., LNT and dNT) that are substantially larger than its maximum thickness.  In this case, a NT-shell 

has some dimensional characteristics of a macro-shell.  The NT shells of the ratio, hNT/RNT, such that 

 

     1/1000 < hNT/RNT < 1/10  (thin shell assumption)               (1a) 

 

can be considered thin, as the NT thickness is much smaller than its radius.  If hNT/RNT < 1/1000, then they represent 

membranes that have negligible bending resistance as in continuum mechanics.  In the case of small radii, the NT 

thickness may not be negligible as compared to the NT radius.  In fact, the elastic shells such that 

 

      hNT/RNT  > 1/10  (thick shell assumption),                            (1b) 

 

are no longer thin as far as their cross-section is concerned (Table 2).   

 

TABLE 2. 

Classification of carbon NT shells based on the thickness-to-radius ratio, hNT /RNT 

 

Estimates for NT thickness, hNT Thin shells†, RNT Thick shells, RNT 

0.34 nm (based on van der Waals forces [5]) 3.4 nm - … 0.2 – 3.4 nm 
0.28 nm (based on a truss model [10]) 2.8 nm - … 0.2 – 2.8 nm 
0.072 nm (a half of the C-C bond length) 0.7 nm - … 0.2 – 0.7 nm 
0.066 nm (based on a shell analogy [2]) 0.6 nm - … 0.2 – 0.6 nm 

 

Inequalities (1) can be considered as the separation criteria for the lowest two length scales (Fig. 2) represented 

                                                
† Note that the transitional values are included here.  The thin shells are better separated by hNT/RNT < 1/20. 
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by the thickness of a carbon ring, hNT, and the NT radius, RNT.  These length scales merge when the criterion (1b) 

holds and a class of thick NTs is formed (Table 2).  The thin-shell model [2] is most suited when these length scales 

are separated, i.e., the criterion (1a) is satisfied.  The influence of the largest scale associated with the NT length is 

critical for the applicability of a beam model to NT buckling as the loading acts along the NT that is about to deform 

in a deformation mode dependent on its length. 

    

2.2. Loading and deformation of carbon NTs.  In continuum mechanics, the material particles of the thin 

layer that comprises a deforming shell are contained within a top and a bottom bounding surfaces and the edge 

faces.  The middle surface is often used as the reference surface.  All of the surfaces are assumed smooth.  Here, NT 

shells are defined by the smooth surface generated by an extension of the 2D lattice of covalent bonds and 

intersecting centers of the atoms.  This middle surface of the equivalent shell is linked to the equilibrium positions of 

carbon atoms and the lines of relaxed covalent bonds.  For NTs, the deforming material is represented by the 

discrete atoms and the surrounding electron “clouds” that are concentrated along the C-C bonds.  The interlayer 

spacing, t, provides an upper bound for the “thickness” of carbon NTs and a single carbon sheet.  Mechanical 

loading is transferred between the adjacent atoms via highly directional covalent bonds.  This open lattice-type 

structure contributes to the reduction in the effective thickness of carbon NTs.  Any considerations of 

homogenization require a minimum number of NT cells along the NT length before any material averaging can be 

considered unique, i.e.,  

     LNT/a1 > 10,                              (2) 

 

where a1 is the width of a carbon ring [5], i.e., the characteristic dimension of the NT periodic structure.  In 

continuum theories, quantities like LNT/a1 tend to infinity, while in nanomechanics it may be just a large number: 

LNT/a1 >> 1.  The NT length, LNT, is bounded from above by the onset of tube coiling during manufacturing, which is 

likely to depend on the ratio, Lc = LNT/dNT.  Even when the homogenization criterion (2) holds, the compressive 

mechanical load is still introduced by a uniform axial displacement as opposed to macroscopic theories, which 

involve axial loads or stresses that are associated with the concept of cross-sectional area [6]. 

From the mechanical viewpoint, the elastic deformation is limited by the extent of allowable straining during a 

time period, ∆T.  For carbon NTs, the process of elastic deformation should be completely reversible from the 

thermodynamic point of view.  The deforming NT should pass through a sequence of the equilibrium states.  This 

sets a time-scale limit for a continuum model applied to the molecular structures that have significant relaxation 

time, ∆tλ , i.e., ∆tλ << ∆T.  Relaxation of molecules depends on their temperature.   

Linear buckling theories for elastic beams and shells describe the deflections that are smaller than the wall 

thickness and exhibit very small elastic strains.  That is the axial strain should be smaller than the estimated 

thickness, hNT.  Since the mechanical loads are transmitted through the force field of highly localized covalent 

bonds, the inter-atomic interaction during elastic deformation can be approximated by the harmonic force field and 

all strains should be smaller than one half of the bond length, lc-c/2.  One half of the bond length, lc-c, may serve as an 
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estimate‡ for the NT thickness, hNT, associated with the transfer of mechanical loads (Fig. 1).  This estimate of the 

NT thickness is close to the shell-based value [2], but it has somewhat different physical nature. 

This study of NT buckling covers all ranges of geometric parameters shown in Table 1 as opposed to a 

particular case of NT geometry.  The dimensions of NT molecular structure are integrated into the analysis 

presented by combining the elements of continuum mechanics and scaling analysis.  The concepts of classical 

mechanics are extended across the length scales along with careful consideration of possible limitations and their 

sensitivity to the variability in NT dimensions. 

 

3. Analysis of carbon NTs with the continuum beam model: applicability criteria, the key parameters and 

a law of geometric similitude.  To examine possible length-scale limitations of the macroscopic Euler beam theory, 

all underlying continuum-based assumptions must be scrutinized (Appendix).  The range of validity of different 

assumptions may be defined by using geometric parameters of NT molecular structure (Section 3.1).  This approach 

provides a link between the molecular structure of carbon NTs, their mechanical properties and the beam model for 

NTs.  Here, the analysis is restricted to the linear elastic behavior of the equivalent NT shells, although NTs are 

capable of relatively large elastic deformations that are potentially nonlinear [5].  This requires a general nonlinear 

load-displacement relation, 

 

     P/ΑNT ∝ (LNT – LNTo)
n/Ln

NTo ,                                    (3) 

 

to be linear with respect to the NT elongation or compression, LNT – LNTo, i.e., n = 1, where LNTo  is the original NT 

length.   

The constant of proportionality in the relation (3) defines the initial value of the elastic modulus, ENT, of a beam 

having cross-sectional area, ANT, [6, 8].  The applicability of the continuum area concept is limited to a group of the 

thick NT shells of small radii that are defined by inequality (1b).  As the ratio of NT radius of curvature to the size 

of a representative structural cell, a1 (i.e., the ratio χa, χa=RNT/a1) approaches unity, the closed molecular structures 

that have large aspect ratios, LNT/dNT, become similar to a nano-beam in their mechanical response (Section 3.2).  

That is a carbon NT reaches its nano-beam radius when RNT/a1 ≈ 1.  This condition is valid only for NTs with small 

radii, and it can be violated by a class of larger NTs [2] since the NT buckling is not always affected by the 

continuum area nor by the problems of thickness estimates [7].   Here, in contrast to other studies [2, 6, 7], both 

classes of NTs are investigated. 

 

3.1. Criteria for the validity of continuum assumptions.  The classical Euler beam theory of continuum 

mechanics is based on a number of assumptions (Appendix) that provide a rigorous framework for deriving 

governing equations for the deformation of solid beams and specify possible limitations for the beam theory [8].  For 

the validity of most assumptions, all elastic strains have to be negligible as compared to the NT axial strain, ε11.  It 

can be approximated by ε11 ≈ (LNT – LNTo)/LNTo, where LNTo is the original NT length.  In the lattice-beams [9] that 

                                                
‡ The NT thickness can be estimated by evaluating the transverse dimension of a symmetric electron “cloud” in a 
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are susceptible to transverse shear, the shear may not be small unless the axial strain is infinitesimal, i.e., the length 

of a NT remains essentially constant.  Such constraints hold if  

 

     ε11 ≈ (LNT – LNTo)/LNTo << 1.               (4a) 

 

Criterion (4a) may be satisfied only by long NTs.   

The key geometric assumption, which is not always quantified, and the validity of other assumptions depend on 

the aspect ratio of carbon NTs (i.e., the ratio of their diameter, dNT, and the length, LNT).  An appropriate range of 

aspect ratios can be defined by the following inequality 

 

       dNT/LNT  < 1/10.                                         (4b) 

 

This requirement, which is less restrictive than a condition: dNT/LNT  << 1, is satisfied by two classes of NTs: long 

NT shells and thin beam-like NTs.  It also sets a lower limit for the size of the molecular systems in the MD 

simulations (e.g., LNT) that use the beam model in data reduction.  Moreover, it ensures the separation of molecular 

length-scales (i.e., LNT/a1 >> 1), which is required for obtaining the effective material properties via averaging or 

homogenization of NT structure.  Criterion (4b) also distinguishes the beam deformation modes from the shell 

buckling modes for NTs with moderate and large radii.  The MD data [2] supports the last conclusion. 

Applicability of the continuum beam model that is based on the Euler beam theory is limited to the NTs of high 

aspect ratios, i.e., inequality (4b) should be satisfied.  The compressive axial strains should be small as required by 

inequality (4a) for linear elastic deformation.  Two classes of carbon NTs defined by inequalities (1a) and (1b) may 

satisfy these requirements (i.e., thin and thick NT shells in Table 2).  The value of NT Young’s modulus, ENT, 

however, should not depend on the size of a NT.  As a result, the concept of NT Young’s modulus, ENT, is most 

applicable when a carbon NT reaches its nano-beam radius, RNT/a1 ≈ 1.  For large values of NT radius, the 

continuum assumption about the cross-sectional area of a NT does not hold, and the Young’s modulus of NT lattice 

is more appropriate along with the stiffness parameters for shells [2].  However, the continuum beam model may be 

utilized to estimate the critical buckling strain of thin high-aspect-ratio shells. 

 

     3.2. The key non-dimensional parameters for the buckling of thick NT-shells.  For carbon NTs of small radii, 

the Euler beam model (Appendix) may qualitatively describe the process of buckling.  In the Appendix, it is noted 

that the critical load, Pcr, for the initiation of buckling deformation mode strongly depends on the end conditions of a 

NT.  The global response of a beam depends on the product of its Young’s modulus, ENT, and its moment of inertia, 

INT, which also depends on the continuum cross-sectional area, INT = ANT R
2
NT.  Since the dependence of the NT 

moment of inertia, INT, on its radius is explicit, INT = πR4
NT, the general expressions for the critical load, Pcr, stress, 

σcr, and strain, εcr, can be written without it, i.e., their functional dependence on NT parameters is given by 

  

     σcr = f1(ENT, LNT, dNT, a1),                           (5a) 

                                                                                                                                            
half of the bond transferring the mechanical load (Fig. 1), i.e., approximately a half of the C-C bond length. 
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or, after introducing three non-dimensional quantities, 
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NT
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cr πσ = ,            (5b) 

 

where f1 and fbeam are real-valued functions in the dimensional analysis of the onset of buckling.  Here, parameters 

LNT, RNT, and a1 represent the three length scales involved in this nanomechanical problem.  Hence, the scaling 

analysis is carried out with the hierarchical dimensional analysis.  The number of independent non-dimensional 

quantities is determined by the dimensional analysis.  It is given by the difference between the number of 

independent parameters and the number of fundamental physical dimensions (i.e., length, time, force).  Relation (5b) 

shows the groups of parameters that are important and may occur in any formulae for linear or nonlinear buckling.  

Note that the critical strain, εcr, and the moment of inertia, INT, are dependent parameters in the functional relations 

of the dimensional analysis.  An important role of the moment of inertia, INT, in the mechanics of beams is still 

reflected by the cross-sectional area in the relation (5b).  An explicit form of the relation (5b) for a special case of 

fbeam(πR2
NT/L

2
NT, RNT/a1≈ 1) can be given by modifying the Euler buckling formula:8  

     

  crL
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crP
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cr

NT

NT

NTNTNT

εππ
σ
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==

2

2

4 .                 (5c) 

 

Here, the ends of a NT are fixed, i.e., the end layer of atoms is constrained.  The critical stress, σcr, and the critical 

strain, εcr, εcr ≈ (LNT – LNTo)/LNTo, are inversely proportional to the square of the NT aspect ratio, LNT/dNT, or 

proportional to the NT cross-sectional area, πR2
NT, normalized by the NT length, LNT.  The form of formula (5c) 

illustrates that even small variations in the value of NT radius or its length may affect the resulting strains or critical 

loads.  Formula (5c) is valid only when the NT aspect ratio, LNT/dNT, satisfies inequality (4b).  The assumption of 

continuum cross-sectional area, ANT, requires that the ratio χa=RNT/a1 is to be small and close to unity.  Note that the 

ratio LNT/a1 is large when the condition (4b) holds.  As a result, the NTs that satisfy these conditions behave as nano-

beams of carbon or other materials.   

Note that the two criteria, (4a) and (4b), for the validity of key beam-model assumptions are coupled.  Both 

criteria involve the length, LNT, of NTs that leads to some coupling effects.  Figure 3 shows dependence of the 

critical buckling strain, εcr, on the aspect ratio of NTs for different values of NT diameter.  NT buckling is described 

by the formula (5c).  Notice that for NTs with diameters: dNT = 1 and 2 nm, the critical strain, εcr, is less than 2% 

only for high values of length, LNT, where both criteria are met.  When RNT/a1 ≈ 1, the beam model is most applicable 

(i.e., all values of the strain, εcr, are below the maximum linear strain of 2%, say) as the NT has reached the nano-

beam radius at RNT = 0.2 nm.  Note that the three graphs correspond to distinct classes of NTs (Table 2) on the 

model applicability map (Section 3.4).  The coupling effect requires larger NT lengths for larger NT diameters when 

the linear beam theory is implemented. 
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Dimensional analysis provides the key non-dimensional quantities that control the physical phenomenon of NT 

buckling.  It means that  

the process of NT buckling should remain the same when the NT length, LNT, and NT radius, RNT, change as 

long as the non-dimensional quantity, πR2
NT/L

2
NT, determined by the dimensional analysis has the same 

numerical value.   

Similarly to the laws of similitude in the dimensional analysis of problems in continuum mechanics, this constitutes 

a mechanical law of geometric similitude for the buckling of NTs with small radii.   

 

3.3. The key non-dimensional parameters for the buckling of thin NT-shells.  The global response of NT 

shells, for which the assumption of continuum cross-sectional area, ANT, is not valid due to the large values of NT 

radius, can also be qualitatively described by the beam approximation [2].  Here, dimensional analysis can also be 

carried out for such NTs as it is shown above, to determine the key non-dimensional ratios that control the buckling 

behavior.  For NT shells, a general functional dependence on NT parameters is given by 

  

     εcr = f2(CNT, DNT, LNT, RNT, hNT),                     (6a) 

 

or, after introducing non-dimensional quantities, 

 

     ),,(
2

NT

NT

NT

NT

NT

NT
shellcr R

h

L

R

Ch

D
f

πε =             (6b) 

 

where f2 and fshell are real-valued functions, DNT is the bending stiffness and CNT is the axial stiffness of a NT.  Note 

that the critical strain, εcr, is more appropriate than the critical stress for NTs with no continuum cross-sectional area.  

Here, NT thickness, hNT, represents the smallest of the three length scales involved as opposed to the cell size, a1, in 

the previous class of NTs.  For NT shells, when hNT/RNT << 1, an explicit form of the critical strain relation (6b) can 

be again derived by modifying the corresponding Euler formula:8  

     
NTo

crNToNT

NT

NT

L

LL

L

R
cr

)(
2

4
−≈





= πε .                         (6c) 

 

is valid for a special case when RNT/LNT << 1, while the condition, DNT/CNT << 1, is automatically satisfied.  These 

restrictions and the applicability criteria (4) should be specified, when these or similar formulae for buckling are 

used [2].  The scaling analysis extends the applicability of formula (6c) for a class of NT shells having various 

geometric parameters (Table 1).  A factor “4” in formula (6c) depends on the boundary conditions (Appendix), i.e., 

the NT end conditions.  Significance of ratios such as hNT/RNT, RNT/LNT or dNT/LNT, πRNT/LNT, and DNT/CNT is 

underscored here by the dimensional analysis.  Note that the important non-dimensional quantity, R2
NT/RNTLNT, 

describing the ratio of the NT cross-sectional area, ANT, to its lateral surface, 2πRΝΤLΝΤ, is dependent on the NT 

aspect ratio, LNT/dNT.  The ratio hNT/RNT is critical for NTs of low aspect ratios, i.e. when the criteria (4a) is not met 

by the NT geometric parameters.  The data of MD simulations [2] support these conclusions. 
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The molecular structure of thin NTs is different from that of the “thick” NT shells (Section 3.2).  However, there 

are conditions under which NTs of large radii (or the thin shells in Table 2), may behave as beams.  When the 

formula (6c) is valid under the aforementioned conditions, the critical strains for the onset of NT buckling is shown 

in Fig. 4 for the cases of relatively large radii.  Dependence of the buckling strain, εcr, on the aspect ratio of NTs is 

quadratic as in the case of thinner NTs (Fig. 3).  However, the coupling of two criteria, (4a) and (4b), through the 

length, LNT, imposes some restrictions on the range of aspect ratios, LNT/dNT, in order to preserve the validity of 

beam-model assumptions.  The larger is the NT diameter, the larger the aspect-ratio value should be.  For NTs with 

diameters: dNT = 5 and 10 nm, the critical strain, εcr, is less than 2% only for very high values of length, LNT, where 

both criteria are met.  Note that hyper-elastic properties of NTs allow larger compressive strains (e.g., 5 %). 

Note that the correctness of dimensional analysis is illustrated by the fact that the critical values of loads (5c) and 

strains (6c) for the onset of buckling are expressed only in terms of non-dimensional ratios of geometric parameters 

without adding any additional parameters.  Although, the aspect ratio, LNT/dNT, controls the key values in both 

equations (5c) and (6c), the numerators of both non-dimensional quantities have different physical nature that 

emphasize the known sensitivity to geometric variations in the cross-sectional area and perimeter for beams and 

shells, respectively.  As a result, a more general form of the mechanical law of geometric similitude stipulates that  

NTs or nano-rods having different values of dNT and LNT have identical buckling behavior and 

critical strains as long as the aspect ratio, LNT/dNT, remains the same.   

This law also holds for non-carbon nano-rods.  For short NTs, the key ratio is hNT/RNT, which is a part of the 

corresponding law of geometric similitude.  Therefore, this law allows one to reduce the number of MD simulations 

that are needed to describe a class of NTs or nano-rods. 

 

     3.4. A model applicability map. Ranges of applicability for the continuum beam model span two different 

groups of geometric parameters that define two different classes of NTs with small and large values of radius 

(Tables 2).  It is shown above that NTs may have the same buckling behavior, although other mechanical properties 

(e.g., transverse stiffness) may diverge due to different structural characteristics [1].  Identification of the key non-

dimensional ratios of geometric parameters is important for the ability to apply the classical Euler formula across the 

length scales for a variety of NT geometries.  These non-dimensional quantities may also be used to subdivide NTs 

into several classes of SWNTs that have distinct mechanical behavior due to different structural characteristics.  For 

example, NTs with the small values of a ratio, χl, χl = RNT/lc-c, (1.5, say) have high transverse stiffness due to their 

tight structure, significant curvature and highly pre-strained and pre-stressed covalent bonds.  Such NTs loose thin 

shell characteristics (Table 2).  For large values of the ratio χl (100, say), NTs have large diameters, lower curvature 

and the covalent bonds in the form which is close to or identical to those in a sheet of carbon atoms [4, 5].  Such 

NTs are prone to inward buckling [1] or even flattening.  These structural differences in the SWNTs may lead to 

different overall mechanical responses that would require different mechanical models.  Mechanical behavior of 

different classes of SWNTs can be characterized by dimensional analysis of the NT buckling and their geometric 

parameters.  Tables 1 and 2 provide a summary of ranges for the NT geometric parameters and classes of NTs 

considered in this study. 

     Applicability of the continuum beam model for NT buckling can be described by a model applicability map with 



 

 11 

two regions having different ranges of geometric parameters (Fig. 5).  It shows that the beam model fits best for the 

parameters along the limiting line corresponding to the nano-beam radius and the neighboring band.  An extension 

of that band for larger radii and beyond the value of 1/10 would likely involve some micropolar effects [9] in a beam 

model or an introduction of a shell model.  The NT-shells can be also described by the beam model when their 

aspect ratios, LNT/dNT, are high even if their radii are relatively large (Table 3).  The two classes of NTs may be 

replaced by the corresponding groups of non-carbon nano-rods (e.g., Co, Fe) as long as they satisfy the two key 

applicability criteria (4) for a continuum model.  This applicability is limited to the buckling behavior, of course.   

    
TABLE 3. 

                    Restrictions on non-dimensional parameters for the applicability of the continuum beam model 

 

        Thin NT shells        Thick NT shells    Carbon nano-beams 

1/Lc <  dNT / LNT < 1/10  1/Lc < dNT / LNT < 1/10 1/Lc < dNT / LNT < 1/10  

10 < LNT / a1 < dNTLc/a1  10 < LNT / a1 < dNTLc/a1 10 < LNT / a1 < dNTLc/a1 

12 < RNT / a1 0.8 < RNT / a1 < 12 RNT / a1 ≈ 1 

hNT / RNT < 1/10 1/10 < hNT / RNT  0.33 < hNT / RNT < 1.7§ 

DNT / CNT << 1 DNT / CNT << 1 DNTbeam / CNTbeam << 1 

 

4. Discussion of the analysis results on NT buckling.  One of the general results of this study is a methodology 

for the extension of the continuum models across hierarchy of length scales to various nano-structured materials.  

This study is focused on the molecular lattices that have either one-dimensional beam-like structures or closed 

cylindrical shapes of elongated shells as opposed to the two-dimensional carbon sheets considered by Odegard et al. 

[10].  This methodology is defined by a set of criteria that should be satisfied and the hierarchical dimensional 

analysis that provides the key parameters and the ranges of their values, which control the phenomenon of NT 

buckling.  Some of the results provide useful guidance for MD simulations (Section 4.3) and the design of NT-based 

scanning probes (Section 4.4).  Unique features of the nano-structural buckling are discussed in the next section. 

 

4.1. Mechanics of carbon NTs.  The nanomechanical buckling problem has a few distinctions from its 

macromechanical counterpart [8].  First, the thermodynamic conditions under which the total energy of a molecular 

system can be equated with the elastic strain energy are important when a linear elastic model is used (Sections 2 

and 3).  Second, a homogenization criterion for the averaging of material properties has to be introduced, as the 

macromechanical assumption about an infinite number of atoms does not hold.  Third, validity of the assumptions 

used in the continuum beam model depends on the characteristics of molecular structure of carbon NTs (Section 

3.1).  Moreover, the physical stresses and strains depend on the local structure of NTs and the corresponding 

mathematical expressions involve parameters that describe molecular structure of NTs (Sections 3.2 and 3.3).   

The displacement boundary conditions are more appropriate and easier to implement for NTs than the load and 

traction boundary conditions, as the force-displacement relation (3) and the applicability criteria (4) involve either a 

                                                
§ These bounds depend on the estimates for NT thickness, hNT (see Table 2). 



 

 12 

change in NT length or the NT length itself.  The moment of inertia, INT, is shown to be a dependent parameter 

(Section 3.2), which can be excluded from the formulae (5) for critical buckling load that involve only independent 

parameters.  Formulae (5) for the critical buckling load are applicable only to NTs of small radii when the concept of 

continuum cross-sectional area is most valid.  The applicability of concepts such as the continuum area and the 

Young’s modulus depend on the NT molecular structure (Section 3).  Formulae (6) for the critical buckling strain 

are valid only for the high-aspect-ratio thin NT shells (Section 3.3).  Applicability of these formulae is restricted by 

the conditions that depend on the length scales involved (Table 3).  This analysis is valid only for the linear range of 

NT deformations that exclude any plastic effects [11]. 

For small values of the NT radius, the continuum assumption about the cross-sectional area of the NT beam is 

best satisfied as the ratio RNT/a1 is close to unity.  Note that the geometry of such NTs approaches a topological 

anomaly (i.e., a collapse of the tubular structure) as the two smallest length scales merge into one.  The concept of 

Young’s modulus, ENT, is also most applicable at this limit, although, its value should not depend on the size of a 

specimen [6, 8].  The importance of cross-sectional area, ANT, for the understanding of NT behavior can also be 

illustrated by re-writing relation (3) for the linear elastic limit, n = 1, as 

 

     F = g(RNT, ENT)(LNT – LNTo)/LNTo,       

 

where F is the force applied to a NT, function g depends on the NT modulus, ENT, and is proportional to the NT 

radius, i.e., g(RNT, ENT) ∝ R2
NT.   

Assumptions (B1) and (B4) in the Appendix allow the use of one-dimensional theory for capturing the dominant 

global response features and in deriving the elastic beam equation. Assumption (B2) restricts the direction of 

displacement of carbon atoms located near the NT edges and the orientation of a single NT.  Note that for the type of 

loading in the assumptions (B1) and (B2), the work done by the applied load is independent of the path it follows 

during deformation.  Requirement (B3) about the constant cross-sectional area leads to the constant moment of 

inertia, INT.  It is satisfied in the absence of vibrations and temperature gradients.  Note that the existence of 

continuum cross-section is not required for the analysis of NT buckling, in general (Section 3.3).  Carbon NTs have 

very high axial stiffness that satisfies the condition (B5).  Assumption (B6) implies that the beam cross-sections do 

not deform in their planes and their products of inertia are negligible.  It requires all cross-sections remain 

perpendicular to the original image of the beam reference axis during deformation. To control stresses according to 

the assumption (B9) is problematic for NTs of small radii.  In the initial state of relaxed lattice structures, Halicioglu 

[4] found that the radial stresses are tensile, while the tangential or circumferential stresses are compressive.  These 

stresses are noticeable for the NT diameters such that dNT < 1 nm, however their value is small compared to the NT 

modulus.  These internal stresses diminish as the diameters of NTs increase. 

 

     4.2. Hierarchical dimensional analysis.  The functional relations (5) and (6) have resulted from the hierarchical 

dimensional analysis that spans the three length scales associated with the size of a carbon ring and the bond length, 

the NT radius characterizing the NT cross-sectional size and area and the length of NTs corresponding to the 

macromolecular scale.  This analysis is based on a set of inter-scalar non-dimensional quantities (see Table 3).  This 
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study is focused on cases when the length scales are well separated.  Equations (5) and (6) provide structure-

property relationships that link the buckling loads and strains of carbon NTs with geometric characteristics of their 

molecular structure under certain restrictions.  

A unique feature of the dimensional analysis is that it allows one to reduce the number of important parameters 

that characterize a problem and identify the key non-dimensional ratios of such parameters.  For example, the 

mechanical response of a beam depends on the product of its Young’s modulus, ENT, and its moment of inertia, INT, 

which also depends on the area, INT = ANT R
2
NT.  This is reflected in the governing equation for the deflection of 

beams (Appendix).  In Section 3.2, it is proven that this important parameter is not directly relevant.  Moreover, in 

this analysis, the restrictions are formulated with inequalities that allow one to consider wide ranges of numerical 

values for the parameters involved (see Table 1).  Therefore, such analysis is applicable to NTs having different 

values of geometric parameters.  It also reduces the number of MD simulations that are needed to describe a class of 

carbon NTs (Section 4.3). 

      

4.3. Guidelines for MD simulations.  Yakobson et al. [2] have carried out the MD simulations of NTs having 

dNT = 1 nm.  This NT size belongs to the transitional range between thin and thick NT shells (Table 2).  Such NTs 

satisfy the homogenization criterion (2) that sets a lower limit for the size of the molecular systems in the MD 

simulations, which use the beam model in data reduction.  For NTs with LNT  > 10 nm, the tube preserved its circular 

cross-section as it buckled sideways like a beam and as well as during post-buckling.  The critical strain was close to 

that for a beam [2].  For shorter NTs, the buckling behavior was dramatically different.  Analysis in Section 3 

identifies the critical parameters such as an aspect ratio, LNT/dNT, and the inequality, dNT/LNT < 1/10, which control 

this change in the buckling mode.  That critical parameter and the criteria for changes in the NT buckling mode are 

applicable for other NT geometries as well.  This fact extends the value of a single MD simulation to other NT 

geometries. 

The dimensional analysis and equations (5) and (6) suggest that the buckling behavior of NTs having the same 

values of non-dimensional quantities should be similar even if the numerical values of two geometric parameters are 

different.  Indeed, dimensional analysis of the NT shells having finite diameters and large aspect ratios demonstrates 

that their buckling behavior shown in Fig. 4 should be similar to that of nano-beams (Fig. 3).  Similarly to the 

macromechanical laws of similitude, a mechanical law of geometric similitude is introduced for the nanomechanics 

of buckling of NT molecular structures.  As a result, a single set of MD simulations for NTs within a class of similar 

NTs can describe the buckling behavior of other NTs as well, according to the law of similitude (Section 3.3).  This 

law allows one to reduce the number of required MD simulations for a group of NTs.   

 

4.4. Design of NT-based scanning probes.  Design of NT-based sensory or scanning probes (e.g., AFM tips) 

may involve selection of NTs with certain mechanical properties (e.g., beam-like behavior).  Analysis of Section 3 

outlines the conditions under which a NT molecular structure would have a beam-like response, which is required 

for the effective NT-based AFM probes.  The wide range of geometric parameters considered in Tables 2 and 3 

allows for the optimization of such probes.  NTs with the smallest diameters (the class of carbon nano-beams in Fig. 

5) are the closest to the beams as far as their properties and the structure are concerned.  In experiments, the 
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direction of loading may not be easily controlled for such NTs at the nano-scale level as the orientation of a single 

NT, its bonding to the testing device and the control of testing nano-devices are problematic [5].   

Implementation of the nano-beam model in data reduction for the sensory experiments that depend on the state of 

stress in carbon NTs can be affected by the violation of the “stress-free beam” assumption (B7) discussed in the 

Appendix.  It is known that the Young’s modulus, ENT, of beam-like NTs can be evaluated as a second derivative of 

the elastic strain energy, (elastic, with respect to the axial strain [2, 8].  The macroscopic expression for the potential 

energy can be given in terms of the elastic energy: (elastic = σijεij/2.  For NTs having small radii, RNT, the stress state 

would be affected by the NT curvature [4].   

     Experiments that are sensitive to the Poisson's ratio of carbon NTs may also benefit from the consideration of 

size effects.  The Poisson’s ratio of graphite is 0.19, same as from the radius reduction in the MD simulations of 

Yakobson et al. [2].  However, Halicioglu [4] showed that this value is smaller, for NTs with the radii that less than 

0.5 nm, and then it reaches a constant for larger NTs.  Since the Poisson’s ratio is an intrinsic property of a material, 

it may also serve as an indicator for the nano-beam behavior.  As a result, the model applicability map (Fig. 5) may 

also indicate the structural parameters that define a distinct carbon material, the carbon nano-beam, which has 

intrinsic properties different from those of a NT shell. 

 

5. Conclusions.  Analysis of validity of continuum beam theory for the constitutive behavior of carbon NTs and 

other nano-rods of non-carbon materials is presented along with the applicability criteria and a model applicability 

map for the Euler beam model.  In particular, the continuum beam model can be used for the qualitative analysis of 

carbon NTs when  

- the homogenization criterion, LNT/a1 > 10,  

- the aspect ratio criterion, LNT/dNT  < 1/10, and  

- a criterion for the linearity of strains, (LNT – LNTo)/LNTo << 1,  

are satisfied.  These criteria set certain requirements for the MD simulations as well.  The coupling between the last 

two applicability criteria for geometric parameters is examined to show the ranges of allowable aspect ratios for 

different NT diameters.  The key non-dimensional parameters that control the onset of NT buckling and the change 

in buckling modes are identified by the dimensional analysis of NT buckling and the structural parameters 

characterizing NT molecules.  It is shown that the moment of inertia, INT, is relevant to NT buckling only indirectly.  

A set of explicit restrictions on these non-dimensional parameters and the applicability of beam models in the data 

reduction for MD simulations are presented.   

A mechanical law of geometric similitude for NT buckling and its generalization are presented for different 

molecular structures that have the same aspect ratio, LNT/dNT.  A model applicability map for two classes of beam-

like NTs is constructed for dissimilar ranges of non-dimensional parameters.  The law of similitude and the 

applicability map provide a guide for the extension of applicability of MD simulations from one NT structure to a 

broad range of NT geometries.  Among various NTs that have drastically different geometric properties, a class of 

carbon nano-beams is identified at the limit of decreasing NT radii.  The design of NT-based scanning probes is 

discussed.  Formulae for the buckling loads and strains are tailored for the two classes of NTs and compared with 

the data provided by the MD studies.  



 

 15 

In the hierarchical dimensional analysis, three length scales are represented (i.e., the carbon ring, NT diameter 

and its length).  Such analysis provides a number of functional relations between the physical parameters, σcr and 

εcr, and the geometric parameters that form fewer non-dimensional quantities.  It results in structure-property 

relationships that link the buckling strains and critical loads for carbon NTs with the geometric characteristics of 

their molecular structure.  A methodology for the extension of continuum models across the length scales involved 

is developed along with a set of criteria that should be satisfied and the hierarchical dimensional analysis that 

provides the key parameters and the ranges of their values, which control the phenomenon of NT buckling.   
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Appendix: The Euler Beam Problem 

 

The beam equilibrium equation for the deflection, w(x), is given by 

,0
2

2

=+ Pw
dx

wd
EI  

where E is the Young's modulus, I is the moment of inertia and P is the load [8].  Derivation of this equation is based 

on the following assumptions 
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B1) deformation of the beam is linear elastic, 

B2) the direction of the applied load remains constant during deformation, 

B3) the cross-section of the beam does not vary along its length, 

B4) the length, L, is much larger than the radius, R, of the beam, 

B5) the axial stiffness of the beam is large compared to the bending stiffness, 

B6) all deformations of the column occur in the X-Y plane and all cross-sections of the beam remain planar 

during deformation, 

B7) transverse shear deformations are negligible in the beam,  

B8) strains in the column are small, but the rotations of the cross-section may be finite, 

B9) all stresses are negligible as compared to the axial and shear stresses that act on each cross-section of the 

beam and in the X-Y plane. 

A general solution of the governing equilibrium equation is 

 

w(x) = A sin kx + B cos kx + Cx + D  

 

where k2=P/EI and A, B, C, D are constants, those values are determined by the boundary conditions.  Typical 

nontrivial solutions, Pcr = n2π2EI/L2, are available for various beams. Here, n = 1, 2, …; and Pcr is the critical or 

Euler load (for n = 1) for a beam with free ends.  For pin-joined beams, the critical load is four times lower.  For a 

beam with the ends fixed, it is four times higher (see Timoshenko and Gere [8]). 
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Figure 1. Schematic of a carbon lattice sheet composed of carbon atoms in a periodic hexagonal arrangement. The 
“thickness” of highly directional covalent bonds, which are formed with electrons from each atom, may approximate 
the effective thickness of lattice.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Schematic of a carbon ring, a cross-section of an arm-chair carbon NT and a carbon NT which represent 
the three length scales involved in the NT buckling problem.  Separation and collapse of these length scales result in 
different classes of NTs. 
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Figure 3. Dependence of the critical buckling strain of carbon NTs on their aspect ratio for various NT diameters.  
The curve corresponding to the carbon nano-beam limit (dNT = 0.4 nm) lies below the max-strain limit (0.02) for all 
NT lengths, while other curves require large lengths for the model applicability. 
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Figure 4. Dependence of the critical buckling strain of carbon NTs on their aspect ratio for relatively large NT 
diameters.  The larger the NT diameter, the larger length of NTs is required for the applicability of the continuum 
beam model, i.e., the critical strains should stay below the max-strain limit of 2%. 
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Figure 5. A model applicability map for the continuum beam model depending on non-dimensional ratios of 
geometric parameters, which are found by the scaling analysis of the constitutive behavior of carbon NTs that 
belong to two distinct classes of structures and geometries.   
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